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Abstract The purpose of this paper is to provide small sample evidence on the properties of
Lagrange Multiplier {LM) tests for unit roots in time series models in the presence of
missing observations. LM type tests for a unit root in a first order autoregressive process
for two types of null and alternative hypotheses are considered: a unit root without drift vs
level stationarity, and a unit root with drift vs trend stationarity. The small sample size
and power properties of the tests are investigated using a Monte Carlo simulation.

1. INTRODUCTION

Testing for the presence/absence of unit roots has now become an integral part of empirical
work using time series data and there is a wide variety of tesis available for this purpose
(see, for example, Campbell and Perron (1991)). One important limitation of these tests is
that they all implicitly assume that there are no missing observations on the variable being
examined. However, when the data being analyzed is collected on a weekly or daily basis,
there is a high likelihood that missing observations will occur regularly or irregularly owing
to National holidays like Christmas (see, for example, Lim and McKenzie (1992) using
Australian data).

The Lagrange Multiplier (LM) testing principle is applied to the problem of testing for a
unit root in the presence of missing observations in a first order autoregressive process
becaunse it only requires parameter estimates under the null hypotheses which are easily
computed in this case. Moreover, despite the presence of missing observations, the test
statistics have well-known asymptotic distributions which can easily be obtained from
appropriately defined regression equations.

Section 2 presents LM tests for a umit root in a first order autoregressive process in the
presence of missing observations and gives their asymptotic distributions. The small sample

properties of the LM tests are investigated through a Monte Carlo simulation in section 3.
Section 4 contains some concluding remarks.

2. LM TESTS FOR UNIT ROOTS

Following Schmidt and Phillips (1992), let y(t) be a univariate time series with an assumed
data generating process:

Y(£) = @+ B+ x(t), t = 0,..T, (1)

where « and f are unknown constants, and x(t) is a first order autoregressive process:

x(t) = px(t—1) + (t), e(t) ~ 11d(0, o?), t=1,..,T. (2)

The process (2) is initialized at t==1 with the initial value x(0). In this formulation, the aull
and alternative hypotheses are HQ: p=1 and HE: p<1. In this paper, two iypes of null and

alternative hypotheses, are considered, namely,
Case 1 Hé: y(t) has a unit root without drift vs Hi: ¥(t) is stationary; and
)

Case 2 HS: y(t) has a unit root with drift vs H?: y(t) is trend stationary.
In Case 1, Ain (1} is set equal to zero.

Suppose that y{t) is observed only at t{0), t{1),..,t(K), where K is the number of data
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points for the dependent variable that are observed, and {t(k)}%g:o is a subsequence of

{t}%!w__o. The case of no missing observations corresponds to At(k) = t{k)—t(k—1) = 1 for
all k.

Toda and McKenzie (1994) show that a one sided LM test for HO: p=1 in Case 2 can be
obtained as the usnal t—statistic of y, To» in the regression

AS{t) = ¢S(t—1) + error, (3)

where S{t) is defined as

{y(t(k)) —y(0) — k) ift=i(k),
S(t) =

y(8(k1) — ¥{0) — Be(k-1) if t=t(k-1)+1,.., (k)1 @

and ;E? = T-i(y(t(K)) — y(t{0)), the restricted maximum likelihood estimate of . The
regression analogy also suggests the use of a 'coefficient test’ in (3), namely, the use of the

following statistic py = Ty, where ¢ is the OLS estimate of ¢ in (3). In addition, following
Schmidt and Phillips (1992) demeaned versions of 7 and po, 7o and pg, can be defined as
the t— and coefficient statistics of ¢ from the Tegression

AS(t) = constant + ¢S(t~1) + error. (5)
If there are no missing observations so that At{k)=1 for all k and K=T, then 7, g5, 7o

and pg reduce to0 Schmidt and Phillips’ (1992) 7, g, 7 and ;a, respectively.

I a bounding assumption is placed on At(k), then Toda and McKenzie (1994) show that:
1 2,172 1 2,1
(a) 7y => (-2 V(P (b) py => (-1/2)(f} V(Y Par)

(¢) 7, = (—1/2)(J§ v Pa /% (@) gy => (—1/2)(J§ V(rYar ™,

where V(r) is a standard Brownian bridge on [0,1], that is, V(r) = W(r)-TW(1) with W{r)
denoting a standard Brownian motion on [0,1], V{r) is a demeaned standard Brownian

bridge, that is, V(1) = V(1) — j%V(;)d:r} and "=>" denotes weak convergence. These limit

distributions are special cases of those of 7, g, :f and ;), respectively, given in Schmidt and
Lee (1991) and Schmidt and Phillips (1992). The critical values for the asymptotic
distributions of 7, and p, are found in Schmidt and Lee {1991, Table 1) and those for 7,

and p,, are found in Schmidt and Phillips (1992, Table 1A).

The one sided LM test of the null hypothesis for Case 1 is given by the one sided t—test, 7y,

in (3) with S(t) defined as in (4) except that bm{). Using this new 5(t), the corresponding
reoefficient test’ from (4} is denoted by p4, and demeaned versions of 7, and gy, 74 and g,

may be defined as the usual t— and coefficient statistics of ¢ in (5). Toda and McKenzie
(1994) show that:
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(@) 7y => [ WEAWEH g W a2 () o, => 11 Winawoist wian

(©) 1y => {fg WWEH [y W% (9) o => 1L wWiew(oir woZary ™,

where W(r) is a standard Brownian motion on [0,1], and W(r) is a demeaned standard

Brownian motion, that is, W{r) = W(r) — Ly 1)dr. These distributions are just the usual
T 0

Dickey—Fuller (1879} 7, p, 7 and oy distributions, respectively. It should be noted that T
and pq have the same limit distributions as Dickey—Fuller’s {1879} 7 and p tests which
were originally derived for testing H,: a unit root without drift vs Hi: mean—zers

stationarity.
3. SMALL SAMPLE PROPERTIES

In this section, the small sample properties of the unit root tests stated in section 2 are
investigated through a Monte Carlo simulation. The data generating process used in the
experiments is (1) and (2) with a=f=0. The e(t)'s are generated as independently and
normally distributed variables with mean zero and unit variance. Three sample sizes T=49,
98 and 196 are considered. The reason for choosing sample sizes divisible by seven relates
to the way the missing observations are generated. Missing observations are generated to
occur regularly by assuming the last n observations in each block of seven observations is
missing where n=0,1,2,3 and the first block of seven observations starts at 4=0. This is
then like a model on daily data where the data are observed on some days of the week and
not on other days. The effect of this assumption is that for any given sample size, T, the
number of blocks of missing observations is fixed but the number of missing observations in
each block differs. For T=49, 98 and 196 the number of blocks of missing observations is 7,
14 and 28, respectively.

‘Tables 1—2 report the simulation results on the small sample performance of both the
coefficient and t—tests for a unit root based on 10,000 replications in each case. Figures in
all tables indicate the rejection frequencies (%) of the null hypothesis of a unit root for
various sample sizes, numbers of missing observations and values of p. The nominal size of
each test is set equal to 5%. All calculations were performed using the GAUSS matrix
programming language.

Table 1 shows the actual sizes and powers of the T Tp Ay and gy tests. Rejections

frequencies for p=1.0 correspond to sizes. All tests have actual sizes reasonably close to the
nominal size of 5% even for a sample size of 49 with three missing observations in every
seven. However, the sizes of the two coefficient tests, Py and gy, are slightly more distorted

than the t—tests especially for T=49 and to a lesser extent for T—98. For T=49, as the
number of missing observations increases the size distortion of any given test worsens.

For p#1.0, the rejection frequencies in Table 1 are the (size uncorrected) powers of the BT
T 9y and ¢, tesis. The power of the tests is affected substantially by the value of p and T

in the expected ways, namely, as p increases or T falls, power falls. For a giver T and 0,
the power of any test falls as the number of missing observations in a block increases. As
might be expected, the impact of missing observations on power is largest for T=49 and
decreases as the sample size increases. For a given value of p, a comparison of the results
for T=49 and n=0 (implying K=49) with those for T=98 and n—3 (K=56) provides an
insight into how increasing the time Span of the data series, T, while holding the number of
data points observed, K, roughly constant affects power. This comparison suggests that
increasing the time span of the series appears to lead to large increases in power reinforcing
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the point that power is affected by both the time span of the data series as well as how
many data points we have (see Campbell and Perron (1991)). Comparing 7, and 7,, we

observe that which test is more powerful depends on T, p and the number of missing
observations. However, when power is low, T is the more powerful test and when power is

high Ty is the more powerful test. Similarly, when comparing 2y and 81: P4 is the more
powerful test when power is low and 2] is the more powerful test when power is high. One
of the coefficient tests, b1 is sometimes more powerful than both t—tests while for other

configurations of the parameters one or both the t—tesis is more poweriul than both the
coefficient tests. This comparison, however, should be treated with a little caution given
that ihe coefficient {ests suffer larger size distortions than the t—tests.

Table 2 shows ithe rejeciion irequencies for the Top Ton P9 and £ {3
these are sizes and for p#1.0 they are (size uncorrected} powers. As with Table 1, no test
suffers from a serious size distortion but again the coefficient tests suffer greater size
distortions than the {—tests at T=49 {and to a lesser extent at T=98). The impact of
changes of p, T and n on power is as for Table 1. For all but one of the combinations of T,
g and n considered, Ts is more powerful than T In comparing Py and Doy, the more

powerful test depends on the choice of p, T and n. Of the four tests, Ty is the most powerful

in all but one case. However, this conclusion also needs to be tempered by the fact that the
lower {size unadjusted) power of the coefficient tests in some cases may be explained by
their greater downward size distortions.

4. CONCLUSION

Various approaches have been followed in ihe literature to deal with missing observations,
for example, by generating estimates of the missing observations by interpolation or some
other method, or by ignoring the problem. It would be of interest to see how these
approaches impact on the problem of testing for unit roots and to investigate the small
sample performance of such tests compared to tests like those considered here that deal
with the missing observations in a model consistent way.
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TABLE 1: SIZES AND POWERS OF CASE § TESTS
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TABLE 2: SIZES AND POWERS OF CASE 2 TESTS

a 79 Ty Py %)
0 5.2 6.0 33 31
1 5.1 5.2 3.0 2.5
p=1.0 2 4.5 5.1 2.8 2.8
3 4.1 4.7 2.3 2.4
0 10.3 10.8 6.5 5.7
1 9.8 10.1 6.0 5.4
£=0.9 2 8.4 9.0 5.2 4.8
3 6.8 7.2 4.2 3.7
T=49
] 254 27.0 17 4 6.5
1 22.6 23.9 15.4 13.6
0p=0.8 2 19.2 20.5 12.6 11.3
3 14.4 15.6 8.9 8.1
) 6.6 52.0 36.5 370
1 42.5 47.6 32.5 32.1
p=0.7 2 35.9 38.9 26.0 24.7
3 27.0 29.1 18.1 17.4
D 50 5.4 4.2 43
1 5.5 5.9 4.6 3.9
pe==1.0 2 4.8 5.5 3.8 3.9
3 4.5 4.4 3.6 3.1
) PR 25.4 19.8 2079
1 22.8 23.6 19.1 18.5
9=0.9 2 20.3 21.6 17.1 17.2
3 18.2 17.9 15.0 13.8
T=98
) 63.4 734 58.4 65.1
1 61.2 69.0 56.5 62.0
5=0.8 2 55.0 63.1 50.1 55.3
3 49.7 56.0 44.6 47.2
0 855 95.4 83.1 03.7
1 83.6 94.2 0.7 51.8
0=0.7 2 80.0 90.5 76.4 87.1
3 71.7 83.5 7.4 78.1
0 18 49 44 4.3
1 4.3 5.0 4.4 4.4
p=1.0 2 47 5.0 4.3 4.3
3 4.7 4.6 4.9 4.0
0 62.1 70.5 6079 67.7
1 61.0 69.4 59.1 6.2
p=0.9 2 58.9 66.1 56.9 63.0
3 55.0 82.7 53. 59.2
T=196
0 93.1 861 52.6 99.0
1 93.1 08.8 92.5 98.4
0.8 2 91.5 98 .4 90.6 98.1
3 88.7 97.5 87.7 96.9
0 98.5 100.0 98.4 100.0
1 98.7 100.0 98.5 100.0
0=0.7 2 97.8 99.9 97.5 99.8
3 96.5 99.8 96.1 99.8




